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Lipoic acid decreases Mcl-1, Bcl-xL and up
regulates Bim on ovarian carcinoma cells
leading to cell death
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Abstract

Background: Ovarian carcinoma is the leading cause of death from gynecological cancer because there is risk of
chemoresistance. As previously demonstrated in our laboratory, Alpha-lipoic acid (LA), a co-factor for metabolic
enzymes, suppresses the tumor growth. In this study, we have researched the mechanisms that are responsible for
the activity of LA.

Methods: We have studied the mechanisms of LA in two ovarian cancer cell lines, a cisplatin sensitive one, IGROV1
and its resistant counterpart, IGROV1-R10. These cells have been exposed to lipoic acid at various concentrations.
Cell proliferation, cell cycle repartition and nuclear staining with DAPI were recorded. Western blot analyses were
performed to detect various proteins implied in apoptotic cell death pathways. To investigate the formation of ROS,
the oxidation of CM-DCFH2-DA were also determined.

Findings: LA suppressed growth proliferation and induced apoptosis in both ovarian cell lines. Moreover, LA
provoked a down regulation of two anti-apoptotic proteins, Mcl-1 and Bcl-xL protein and a strong induction of the
BH3-only protein Bim. Furthermore, LA induced ROS generation which could be involved in the CHOP induction
which is known to activate the Bim translation.

Conclusions: Our results reveal novel actions of LA which could explain the anti-tumoral effects of the LA. Therefore,
LA seems to be a promising compound for ovarian cancer treatment.
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Background
Alpha-Lipoic acid (LA) is a naturally antioxidant lipo-
philic compound synthesized in small amounts by plants
and animals, including humans. It is an essential co-
factor for mitochondrial enzymes (e.g. pyruvate dehydro-
genase (PDH), succinate dehydrogenase (SDH)) [1, 2]
involved in tricarboxylic acid cycle (TCA). Furthermore,
LA has antioxidant and redox-regulating properties [3].
The reduced form of LA known as dihydrolipoic acid is
the predominant form that interacts with reactive oxy-
gen species (ROS), although the oxidized forms can also
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inactive free radicals [4]. Beneficial effects of LA in sev-
eral non tumoral pathologies have been described [5]. In
cancer studies, LA suppressed the proliferation of cells
such as bladder, breast, colon, hepatoma, and lung [6–11]
without effect on normal cells [12] such as liver, ovarian,
neurons and hepatocytes [13–15]. These effects could in-
duce the apoptosis that is impaired in cancer.
Apoptosis is under the control of Bcl-2 family mem-

bers, promoting or inhibiting this process [16]. Death
signals activate and/or induce pro-apoptotic members
such as Bim which promotes activation of pro-apoptotic
effectors (Bax and Bak) and releasing apoptogenic fac-
tors from mitochondria [17]. Bim, is one of the most po-
tent BCL-2 homology (BH) 3-only molecules, in terms
of cell killing [18], and has also clearly overlapping func-
tions in p53-dependent and p53-independent apoptosis.
Anti-apoptotic members, such as Bcl-2, Bcl-xL and Mcl-1,
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overexpressed in numerous human malignancies, contrib-
ute to cell survival and drug resistance [19, 20]. Bcl-xL
overexpression has been found associated with chemore-
sistance and its decrease involved in apoptosis [21, 22].
Moreover, MCL-1 gene, frequently amplified in human
cancers [20], is associated with chemoresistance and re-
lapse [19, 20, 23]. The reduction of Mcl-1 expression leads
to apoptosis in numerous cancer cells [22–26]. This re-
duction is notably induced by glucose privation [27].
Many cancer cells preferentially enhance aerobic gly-

colysis and transform a significant part of glucose in lac-
tate, even in the presence of oxygen, a common feature
of tumor growth described as the Warburg effect [28].
This metabolism furnishes a significant share of ATP
and essential intermediates required for tumor prolifera-
tion [29]. Its inhibition arrests cancer cell growth [26,
30–32]. The Warburg effect should be in relation with
inactivation of PDH and/or over-activation of LDH [29].
The PDH inactivation disconnects TCA from glycolysis,
and in place of pyruvate, glutaminolysis replenishes TCA
cycle. LA may reactivate PDH and could be a promising
molecule to counteract tumor metabolism [2].
In this study, we examined effect of LA on cellular

growth of two human ovarian carcinomas and the mo-
lecular mechanisms involved. We found LA demon-
strated anti-proliferative effect, induced cell cycle arrest
and apoptosis. In our model, the anti-tumoral effects of
LA might involve, at least partially, from its property to
decrease Mcl-1 and Bcl-xL and to up regulate the BH3
only protein Bim through CHOP induction.

Materials & methods
Cell lines and culture conditions
The IGROV1 cell line was kindly provided by Dr. J.
Bénard (Institut Gustave Roussy, Villejuif, France). The
variant highly chemoresistant cell line, IGROV1-R10,
was established as previously described by Poulain et al.
[33]. Cells were grown in RPMI-1640 medium +Gluta-
max™ (Gibco Life Technologies, Cergy-Pontoise, France)
supplemented with 10 % fetal calf serum, 33 mM sodium
bicarbonate (Gibco Life Technologies, Cergy Pontoise,
France). Cells were maintained at 37 °C in a 5 % CO2

humidified atmosphere and split twice a week by
trypsinization.

Lipoic acid
Lipoic acid (LA) was purchased from Meda Pharma
(Bad Homburg v.d.h, Germany). This compound is pre-
conditioned in a bulb for a volume of 24 ml. This solu-
tion contains 600 mg alpha-lipoic acid. The other
ingredients are Trometamol (known by its synonym
Tris) and water for the injectable. Data were obtained
from the supplier. 5.105 cells were seeded in 25 cm2 flask
day before treatment. When cells have reached their
exponentially growing phase, they were treated 24 h
later continuous manner. The solution is put directly
into the flasks at the concentration studied (0.1; 0.5 and
1 mM).

siRNA synthesis and Transfection
All siRNAs used in these studies were chemically syn-
thesised by Eurogentec (Liege, Belgium) and were re-
ceived as annealed oligonucleotides. The sequence of the
double-stranded RNA used to inhibit Bim expression
(denoted siBim) is anti-sense 5′-uaacagucguaagauaacctt-
3′. Control siRNA (noted siCTRL) was purchased from
Eurogentec (Eurogentec Negative Control SiRNA). Ac-
cording to the manufacturer’s instruction, exponentially
growing cells were seeded the day before to reach
around 50 % confluence at the time of transfection. The
transfection has been described by Lepleux et al. [31].

Proliferation analysis
Cell number and viability were estimated at various times
after the beginning of treatment by a semi-automated
image-based cell analyzer (Cedex XS Analyser, Roche
Applied Science, Meylan, France) using the trypan blue
exclusion method.

Analysis of cellular DNA content by flow cytometry
Cells were prepared for flow cytometry as detailed [22, 31].
Briefly, adherent and detached cells were pooled, washed
in PBS and fixed in 70 % ethanol, centrifuged then incu-
bated for 30 min at 37 °C in PBS. Pellets were collected
and resuspended for staining with Propidium Iodide
(PI) using the DNA Prep Reagent Kit (Beckman-Coulter,
Villepinte, France). Samples were then analysed using
Gallios flow cytometer (Beckman Coulter) equipped with a
blue diode at 22 mW. The fluorescence of Propidium
Iodide was collected in the FL3 channel with a 620 nm
bandpass filter. The doublets were excluded from analysis
using an area versus peak DNA content histogram. The
singulets were analysed in a single-parameter histogram.
Gallios software was used for data acquisition. Kaluza

Software (Beckman Coulter) was run for data analysis.

Nuclear morphology study with 4′,6-diamidino-2-
phenylindole (DAPI)
After treatment, both detached and adherent cells were
pooled after trypsinization, collected on polylysine-coated
glass slide by cytocentrifugation, and fixed in ethanol/
chloroform/acetic acid solution (6:3:1). The preparations
were treated as described by Lepleux et al. [31].

Western immunoblotting
Adherent cells were rinsed with deionized water and
lysed with lysis buffer (pH 8.8 30 mmol.L−1 Tris buffer
containing 6 mol.L−1 urea, 2 mol.L−1 thiourea, 2 %
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CHAPS, 1X protease inhibitor Mix. Western blot were
carried out as described [22]. The membrane was either
incubated overnight at 4 °C in T-TBS-milk 5 % with the
following primary antibodies: anti-Mcl-1 (Santa Cruz
Biotechnology), anti-Noxa (Calbiochem), and anti-actin
(Millipore). Cleaved and total Caspase 3, PARP, Bcl-xL,
Bim and CHOP were purchased from Cell Signaling
Technology (Ozyme, Saint Quentin en Yvelines, France).
Membranes were washed with T-TBS and incubated
with anti-rabbit or anti-mouse secondary antibodies.
Revelation was carried out using ECL Prime detection
reagent (GE Healthcare, Orsay, France).

RNA extraction and real-time quantitative reverse
transcription-PCR (qRT-PCR)
Total RNAs were extracted using the TRIzol® (Invitro-
gen, LifeTechnologies, Cergy Pontoise, France). The
qRT-PCR was carried out as described [34]. Primer and
probe sequences for real-time detection of Bim mRNA
(assay ID#Hs00708019_s1), Mcl-1 mRNA (assay ID#HS
001 720 36_m1) and endogenous control gene GAPDH
mRNA [34] were purchased form Applied Biosystems.
Bim and Mcl-1 transcripts were quantified relative to
GAPDH and normalized to control untreated cells by
the comparative 2ΔΔct method.

Measurement of ROS with CM-DCFH2-DA probe
The probe CM-DCFH2-DA was used for assess the pro-
duction of ROS according to manufacturer’s instruc-
tions. The CM-DCFH2-DA passes through the cell
membrane and once inside the cell is converted to the
non-fluorescent derivate dichlorofluorescein, which in
turn remains inside the cell and reacts with intracellular
ROS to produce the DCF. To study the time-dependent
effect of α-LA on ROS production, 5.105 cells were ex-
posed to 0.5 or 1 mM of α-LA for 3 h, 6 h or 24 h, and
were incubated with 5 μM CM-H2DCFDA (C6827, Mo-
lecular probes) for 30 min at 37 °C in dark. The ROS
scavenger NAC (3 mM) (Sigma-Aldrich, France) was
added 1 h before LA treatment (1 mM). After, adherent
cells were washed out the excess probe with PBS and
then trypsinizated. The fluorescence of DCF was mea-
sured in the FL1 channel with a 525 nm bandpass filter
on Gallios flow cytometer (Beckman Coulter). Gallios
software was used for data acquisition. Kaluza Software
(Beckman Coulter) was run for data analysis. The results
were treated and presented as means ± standard errors
of the means (SEM) of three independent experiments
using GraphPad Prism5 software.

Results
Effects of lipoic acid on cell growth and cell cycle
To explore the therapeutic potential effect of LA for
ovarian cancer treatment, we evaluated its effect on cell
growth and cell cycle distribution. For studying cellular
growth, Cisplatin-sensitive (IGROV1) and cisplatin-
resistant (IGROV1-R10) human cell lines, were cultured
either in absence or in presence of LA (0.1, 0.5 and
1 mM). In each cell line, cell growth was significantly re-
duced in a dose-dependent manner, whereas control
cells increased 3–4 folds (Fig. 1a). LA (1 mM) strongly
inhibited cell growth at each time point tested, and the
number of viable cells remaining close to seeding after
72 h (Fig. 1a). At 0.5 mM, this inhibition was also clear,
but delayed after 48 h treatment. At this time, we stud-
ied cellular morphology, distribution in the different
phases of cell cycle and DAPI nuclear staining. At LA
0.1 mM, no effect was detected in both cell line (Fig. 1b).
From LA 0.5 mM, IGROV1 and IGROV1-R10 cells were
less confluent, as compared to untreated cells or treated
with LA 0.1 mM (Fig. 1b, upper line of each panel).
IGROV1 and IGROV1-R10 showed an important per-
centage of cells in sub-G1 phase (21.1 %, and 27.5 % re-
spectively) in response to LA 1 mM (Fig. 1b, lower line
of each panel). These results were confirmed by DAPI
nuclear staining which showed more features of cell
death, e.g. nuclear condensations and fragmentations (as
named apoptotic bodies) (Fig. 1b, middle line of each
panel) and also by PARP cleavage which has been found
but not a caspase-3 cleavage from 0.5 mM in IGROV1
and resistant counterpart IGROV1-R10 cells (Fig. 1c).
After 72 h of treatment (0.5 and 1 mM), in each cell line,

many rounded cells were detected, suggesting detached
cells; a phenomenon which seemed dose-dependent
(Fig. 1d, upper line of each panel). The cell cycle reparti-
tion revealed that percentage of cells in sub-G1 phase is
drastically increased at 72 h as compared to 48 h in both
cell lines and is also increased in a concentration-
dependent manner reaching 53.4 % at LA 1 mM (Fig. 1d,
lower line of each panel). Moreover, DAPI staining re-
vealed numerous apoptotic bodies after exposure to 0.5 or
1 mM LA (Fig. 1d middle line of each panel). At this time,
we can see that a caspase-3 activation which was accom-
panied by a strong decrease of the full length PARP
(116 kDa) (Fig. 1e).
These results indicated that LA inhibited cellular pro-

liferation and induced a sub-G1 peak associated caspase-
3 activation. The cell detachment observed in flasks,
might be associated with cell death and deregulation of
apoptosis-related proteins.

Effect of lipoic acid on expression of the apoptosis-
related proteins
We tested whether the effect of LA (0.5 or 1 mM) was
associated with a modulation the expression of the
apoptosis-related proteins, Bcl-xL, Mcl-1 and Bim. At
24 h after exposure to LA, no protein variation was de-
tected (data not shown). Anti-apoptotic Mcl-1 protein
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Fig. 1 Lipoic acid induces apoptosis in IGROV1 and IGROV1-R10 ovarian carcinoma cell lines. IGROV1 (left panel) and IGROV1-R10 (right panel)
were treated to a continuous exposure to 0.1; 0.5 and 1 mM of lipoic acid (LA) and effects of this treatment were analyzed after 48 h and 72 h.
a: Cell Viability was expressed as number of viable cells determined by the trypan blue exclusion method. Graphics were realized and are presented as
means ± standard errors of the means (SEM) of three independent experiments using GraphPad Prism5 software. b and d: Morphological features of
the cells observed by photon microscopy (upper line of each panel) and nuclear features of the cells after DAPI staining (middle line of each panel)
were then studied, Bars: 20 μm. DNA content histograms obtained by flow cytometry (lower line of each panel) after a 48 h treatment (b) or a 72 h
treatment (d). For each condition, the percentage in sub-G1 and G0-G1 phases is indicated. c and e: Protein expression levels of PARP (native and
cleaved forms), caspases-3 (pro and cleaved forms) were assessed in control or LA-treated (0.5 or 1 mM) cells at 48 h (c) and 72 h (e) by western blot
using a specific anti-PARP and anti-caspase-3 antibody. Expression of actin was measured as a loading control. Western blots shown are from one
experiment representative of at least three independent experiments and cell lysates
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level was reduced in a concentration-dependent manner
after a 48 h exposure to LA 0.5 - 1 mM in both cell lines
(Fig. 2a upper panel) and Mcl-1 expression was almost
abolished after 72 h exposure to the LA concentrations
(Fig. 2b lower panel), and was concomitant with the
induction of apoptosis (PARP cleavage, caspase-3 activa-
tion) (Fig. 1e). For the same conditions, a concomitant
reduction of Bcl-xL level was found (around 20-30 %)
(Fig. 2b lower panel).
Interestingly, Bim was induced by LA in a dose and

time-dependent manner with occurrence of BimEL and
BimS forms at 72 h (Fig. 2a and b).
To determine whether the inhibition of Mcl-1 protein

and the increase of Bim were due to a reduction of
mRNA, we performed qRT-PCR. Whatever the time and
the LA concentration, no decrease in Mcl-1 mRNA was
observed (Fig. 3a). On the contrary, LA induced a low
up-regulation of Bim mRNA in both cell lines (Fig. 3b).

siRNA-mediated Bim inhibition decreases the cell death in
response of lipoic acid
To study the importance of Bim in the response of our
model to LA, we tested the impact of Bim targeting by
siRNA on cell death of IGROV1 and IGROV1-R10, 24 h
after transfection exposed to LA 1 mM (Fig. 4a). We first
checked the efficacy by showing a complete extinction of
this protein in both cell lines after 48 h of siRNA transfec-
tion. In contrary, Bim expression was not modified in
transfected cells with control siRNA (siCTRL) (Fig. 4b).
siBim combination with LA (1 mM) abrogated the

cytotoxic effect of LA. Indeed, 48 h after treatment, a
decrease percentage of cells in sub-G1 peak, reaching
15 % for IGROV1 and 9 % for IGROV1-R10 was ob-
served when Bim was silenced, as compared to cells
treated with LA alone, (Fig. 4c right column of each
panel and Fig. 4d right column of each panel).
The DAPI nuclear staining confirmed these results,

showing in both cell lines that exposure with siBim and
LA 1 mM, strongly decreased these nuclear characteris-
tics of apoptosis (nuclear condensations and fragmenta-
tions), which were strongly observed in response to LA
treatment alone (Fig. 4c middle column of each panel
and Fig. 4d middle column of each panel).
We investigated the impact of targeting Bim by siRNA
on the apoptosis induction in our models 48 h after LA
treatment. In response to siBim and LA exposure, we
observed an inhibition of caspase-3 cleavage and also a
decrease of Mcl-1 and Bcl-xL proteins (Fig. 4e). These
results demonstrate that Bim is involved in LA-mediated
apoptosis despite a decrease of two anti-apoptotic pro-
teins in IGROV1 and IGROV1-R10 cells.

Lipoic acid may induced the Endoplasmic Reticulum
stress response and accumulation of ROS
Because Bim is frequently induced by Endoplasmic
Reticulum (ER) stress response via the C/EBP homolo-
gous protein (CHOP) expression, we investigated this
pathway in response to LA by detecting CHOP. CHOP
was strongly expressed at 72 h in IGROV1-R10 from LA
0.5 mM (Fig. 5a right panel) and was correlated with the
induction of Bim expression (Fig. 2b right panel).
In order to determine whether LA treatment generates

the ROS in our models, we measured by a converting re-
action of DCFH2-DA to DCF 3 h and 6 h after LA
exposure.
At 0.5 mM LA, we measured a slightly increased ROS

generation in IGROV1 and IGROV1-R10 cells from 3 h
and more important at 6 h in IGROV1-R10 vs IGROV1
cells (data not shown). However, the ROS production
was more efficient at 1 mM LA whatever the time after
treatment (e.g. at 6 h 140 % in IGROV1 and 170 % in
IGROV1-R10) (Fig. 5b-c). Interestingly, pretreatment
with ROS scavenger NAC (3 mM) decreased α-LA-
induced ROS (Fig. 5b-c).

Discussion
Ovarian cancer is the fifth most frequent cause of cancer
death in women, often diagnosed at an advanced stage.
Despite radical surgery and a frequent good response to
a first-line platinum-based chemotherapy, the 5-year
survival rate is about 20 % - 30 % for stage III and IV
disease [35]. Thus, discovery of new treatments is funda-
mental to overcome chemoresistance and improve sur-
vival. In this perspective, lipoic acid (LA) molecule
which demonstrated a low toxicity in various pathologies
(in particular, neurological sequels of chemotherapies)
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Fig. 2 Lipoic acid modulates Bcl-2 proteins family expressions. After 48 h (a) or 72 h (b) of LA treatment on IGROV1 (left panel) and IGROV1-R10
(right panel) cell lines, whole cell lysates were immunoblotted for the indicated proteins and actin was loaded as control. The relative densitometry
values were quantified by Image J® software and are shown on the bottom. Western blots shown are from one experiment representative of at least
three independent experiments and cell lysates. Moreover, on Fig. 2a, there are two different strips of actin both blots were carried out independently
of one another
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could be essential to be tested clinically, if its efficiency
is demonstrated in preclinical studies.
In this study, we demonstrated in two human ovarian

cancer cells lines, one highly chemoresistant, that LA
suppressed the proliferation and induced the cell death
in both cell lines by decreasing of Mcl-1 and Bcl-xL ex-
pression, two anti-apoptotic proteins; whereas the induc-
tion of CHOP could promote Bim transcription.
In our study, the inhibition of proliferation was time-

and concentration-dependent, and was in accordance
with other studies in breast, neuroblastoma, colon, and
bladder cancer cells [6, 9, 11]. We showed that LA treat-
ment provokes the cell detachment in flasks. This
phenomenon could be due to down-regulation of β1-
Mcl

Bim

A IGROV1

B

Fig. 3 Lipoic acid regulates Mcl-1 and Bim mRNA levels. Mcl-1 (a) and Bim
treated with LA different times was assessed by real-time quantitative reve
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the high capacity to inhibit cell growth of numerous
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rest of the cell cycle was accompanied by a cellular accu-
mulation in the sub-G1 phase, which is a characteristic
of cell death. The nuclear morphology revealed fragmen-
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G0-G1: 
64.38%

G0-G1: 
59.29%

G0-G1: 
48.30%

G0-G1: 
60.34%

G0-G1: 
59.87%

G0-G1: 
74.63%

Sub-G1: 
2.56%

Sub-G1: 
2.60%

Sub-G1: 
2.61%

Sub-G1: 
27.50%

Sub-G1: 
39.67%

Sub-G1: 
9.31%

Ctrl
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siBim

LA (1mM)

siCtrl /
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siBim /
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Fig. 4 (See legend on next page.)
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Fig. 4 siBim attenuates lipoic acid induced-apoptosis 72 h after transfection. a: The cells were treated following protocol of exposure regarding
the treatment by lipoic acid (1 mM) administered 24 h after transfection with either 20nM nonspecific siRNA control (siCRTL) or siBim, as described in
materials and methods section. b: Bim protein expression level was assessed in control or treated-cells at 72 h post-transfection of IGROV1 (left panel)
and IGROV1-R10 (right panel) by western blot. Actin protein is used as a loading control. Actin is a same actin that in Fig. (4e). This blot was performed
in the same experiment as that of blot in Fig. 4e. Western blots shown come from one experiment representative of at least three independent
experiments and cell lysates. c-d: Morphological features of the cells observed by photon microscopy (left column of each panel) and nuclear
features of the cells after DAPI staining (middle column of each panel) were then studied, Bars: 20 μm. DNA content histograms obtained by
flow cytometry (right column of each panel) after a 48 h of LA treatment in IGROV1 [c] and IGROV1-R10 (d) cell lines were studied. For each
condition, the percentage of sub-G1 and G0-G1 phases is indicated. e: Bcl-xL, Mcl-1, caspases-3 (pro and cleaved forms) protein expression
levels were assessed in control or treated-cells at 72 h post-transfection of IGROV1 (left panel) and IGROV1-R10 (right panel) by western blot.
Actin protein is used as a loading control. Actin is a same actin that in Fig. (4b). This blot was performed in the same experiment as that of
blot in Fig. 4b. Western blots shown are from one experiment representative of at least three independent experiments and cell lysates
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treatment in both cell lines. However, a more rapid cas-
pase 3 cleaved was observed in Fig. 4e. It is likely that
this difference is due to the transfection process. Indeed
to make a transfection, the flasks were seeded with 375
000 cells (results presented in Fig. 4e), less than the 500
000 cells required to seed both cells lines for none trans-
fected experiments (Fig. 1c-e). Thus, it is likely that the
difference in seeding accelerates the effect of LA. In that
A

B

72 H

CHO

Actin

IGROV1

Ctrl 0.5 1

LA (mM)

Fig. 5 Lipoic acid induces ER stress and increases ROS generation in IGROV
IGROV1 (left panel) and IGROV1-R10 (right panel) cell lines by immunoblot
representative of three independent experiments and cell lysates. b-c: ROS
probe. Histograms show that 3 or 6 h of LA treatment (1 mM) increased RO
represent the mean of n = 3 independent biological replicates ± SEM. Grap
ROS levels in treated vs no treated cells in IGROV1 or IGROV1-R10 were ana
using Newman-Keuls multiple comparison test was used for parametric da
** p < 0.1; *** p < 0.01
sense, the cleavage of caspase 3, was weaker in Fig. 4e,
an attenuation that could indicate a cleavage starting at
this time.
It is also noteworthy that LA induced from 48 h, a

complete down expression of Mcl-1, an anti-apoptotic
protein often up-regulated in cancer cells [25, 38, 39].
LA induced also a strong up-regulation of Bim, a BH3-
only protein which is essential for apoptosis of various
C

   

P

IGROV1-R10

Ctrl 0.5 1

LA (mM)

1 and IGROV1-R10. a: ER stress protein expression was assessed in
using an antibody which recognizes CHOP protein. The blot shown is
production was measured by flow cytometry using CM-DCFH2-DA
S production compared to control and ROS scavenger (NAC). Bars

hics were realized and are presented using GraphPad Prism5 software.
lyzed by One-way analysis of variance (ANOVA) with post hoc analysis
ta. A p value of <0.05 was considered statistically significant. * p < 0.5;
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cell types, including epithelial cells, endothelial cells,
neurons, and lymphocytes [18, 40]. We next investigated
the impact of siRNA-mediated Bim inhibition on the
apoptosis of IGROV1 and IGROV1-R10 cells, in re-
sponse to LA exposure (1 mM). We observed in the
Fig. 4b that siCRTL + LA induced a slowly decrease of
Bim expression protein in both cell lines whereas there
were an increase of cell death (subG1 peak) in both cell
lines. This “contradictory” result is very likely due to the
transfection process, which weakens some cells, leading
a part of them to cell death. In this condition, Bim silen-
cing diminished apoptotic cell death, as observed by the
morphological and nuclear features (Fig. 4b-c left
Fig. 6 Schematic representation of the role of lipoic acid in sensitive or ch
up-regulation of Bim associated with down-regulation of Bcl-xL and Mcl-1.
CHOP induction would result from the over production of ROS induced by
the metabolism of cancer cells, a disconnection between glycolysis and TC
and thus, reconnects the glycolysis to the TCA cycle. This process leads to
ROS production. ROS promote ER stress; a process inducing CHOP expressi
On the other hand, LA is involved in the inhibition of Bcl-xL and Mcl-1, two
major apoptotic death. We suppose that the inhibition of Bcl-xL and Mcl-1
characterized by a decrease of various targets (such as PDK1, AKT, mTORC1
remain to be studied, are shown in blurred. Abbreviations: Acetyl-CoA: acetyl c
ER: endoplasmic reticulum, Bim: Bcl-2 interacting mediator of cell death, PI3K: P
Phosphoinositide (3,4,5) triphosphate, mTORC1 or 2: mammalian target of rapa
4-E binding protein 1, GSK3: glycogen synthase kinase 3, NF-κB: nuclear factor-
MEK: MAPK/ERK kinase, ERK: extracellular signal-regulated MAP kinase
column of each panel). Cell cycle analysis by cytometry re-
vealed that siBim followed by LA (1 mM) reduced the
drop of cells in sub-G1 peak, as compared LA treatment
alone: 15 % vs 21.1 % in IGROV1 and 9.3 % vs 27.5 % in
IGROV1-R10 cells (Fig. 4b-c right column of each panel).
Likewise, Bim silencing is correlated with an absence

of activated-caspase-3 and of PARP cleavage after LA ex-
posure. In consequence, this loss of Bim expression
seemed to partially protect our ovarian carcinoma cell
lines from death. Similarly, a low expression level of Bim
was found significantly correlated with poor survival,
notably for patients with melanomas [41] and glioblast-
omas multiform [42].
emoresistant ovarian carcinoma cells. LA induces major apoptosis by
In explaining the Bim induction, the role of CHOP is highly suggested.
the reconnection of the TCA cycle and glycolysis induced by LA. In
A cycle favours cancer cells growth. Lipoic acid reactivates PDH activity
cell death presumably by generating oxidative stress characterized by
on. This expression upregulates the BH3 only pro-apoptotic factor Bim.
major anti-apoptotic proteins, which conspire with bim to induce
translates by the inactivation of PI3K/Akt/mTOR and ERK pathways,
, p70S6K…) leading to activation of GSK3. These assumptions which
oenzyme a, α-KetoG: α -Ketoglutarate, OXPHOS: oxidative phosphorylation,
hosphoinositide 3 kinase, PIP2: Phosphoinositide (3,4) biphosphate, PIP3:
mycin complex 1 or 2, Akt: protein kinase B, p70S6K: p70 S6 kinase, 4-EBP1:
kappaB, Mcl-1: myeloid cell leukemia sequence 1, Ras: Rous Avian Sarcoma,
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The up-regulation of Bim under LA treatment prompted
us to investigate other anti-apoptotic proteins such Bcl-xL
and Mcl-1, but not Bcl-2, which was not expressed in our
cells. Both Bcl-xL and Mcl-1 have been implicated to pro-
tect ovarian cancer cells from chemotherapy-induced
apoptosis [23, 43], their concomitant decrease appearing
essential to trigger the cell death [25].
In our study, we observed that LA treatment de-

creased Bcl-xL expression (around 20-30 % vs control
cells) more effectively than in the chemoresistant
IGROV1-R10 cell lines. This treatment was more effect-
ive on the reduction of Mcl-1 expression (around 20-60 %)
which was observed earlier, since 48 h after exposure
(Fig. 2a upper panel).
The mechanisms which link LA treatment with the

decrease of Bcl-xL expression remain to be further stud-
ied. However, in order to explain the decrease of Bcl-xL
expression, we can hypothesize that this decrease could
be due to the inactivation of Akt which induced a down-
regulation of one of its target, NF-κB. Indeed, NF-κB
expression has been widely observed in diverse tumor
types, in response to hyperactivation of Akt [44], and
protects cells against cell death through activation of
genes such as Bcl-2 and Bcl-xL [45].
In parallel, we explored the role of ROS production in

the up-regulation, knowing that LA is known to induce
apoptosis via the production of ROS during mitochondrial
respiration from 0.5 mM [15, 46]. Because, this ROS pro-
duction could be involved in the CHOP induction which
is known to activate the Bim translation [47], we studied
Bim expression. We found a moderately increase in the
level of the bim mRNA upon treatment with LA (1 mM)
(Fig. 3b), although it was difficult to assert if this increase
was significant. Another explanation is that the high ex-
pression of CHOP and Bim should be due, at least in part,
to the stabilization of these proteins, which are not prop-
erly degraded. In that sense, ROS could induce a high ER
stress, leading to misfolded proteins. These proteins
should be degraded in first by the proteasome and thus,
Bim and CHOP would be not degraded as rapidly as they
are produced. Furthermore, the ROS production is associ-
ated with the induction of proteasome activity leading to
the down-regulation of anti-apoptotic proteins such as
cellular inhibitor of apoptosis protein 1 and 2 (cIAP-1
and −2) and Mcl-1 [48]. Thus, in our conditions, LA
slightly increase the ROS production which also might
be down-regulate the Mcl-1 expression. ROS have been
shown to be initiators and major contributors of endo-
plasmic reticulum (ER) stress [49]. Whereas numerous
investigations revealed that ER stress could be either a
cause, or a result, of increased ROS generation [50], we
investigated if the CHOP, a pro-apoptotic transcription
factor, was induced by ER stress [51]. We observed that
LA treatment highly induced CHOP, which is known to
bind an element in the promoter of the gene encoding
Bim protein [47]. This induction of CHOP was associ-
ated with concomitant Bim and Noxa up-regulation
(Fig. 2a-b), two factors crucial for induction of execut-
ing apoptosis [50, 52, 53]. Because LA induced Mcl-1
down-regulation and knowing that ER stress was
known to induce Bim and Noxa upregulation [53].
Then, we investigated Noxa expression. In response to
LA exposure, we observed an induction of Noxa in
dose and time-dependent manner. This expression of
Noxa is in line with CHOP expression associated with
ER stress [53]. Moreover, the PERK protein plays a
major role in tethering the ER to mitochondria thereby
promoting the rapid transfer of ROS signals [51, 53].
In summary, we demonstrated that LA induced

massive apoptotic cell death through inhibition of the
two anti-apoptotic proteins Mcl-1 and Bcl-xL, and in-
duction of the pro-apoptotic BH3-only protein Bim in
two human ovarian cancer cells (one sensitive and one
resistant to cisplatin). We found the induction of Bim
was crucial in this process, because its blockage by siBim
drastically reduced apoptosis. We showed that LA pro-
moted massive cell death through an increase of ROS, a
phenomenon that could lead to Bim, Noxa through
CHOP induction (Fig. 6). The pan-inhibitor effects of
LA could be further investigated and incite to test this
molecule in vivo studies [11, 54].
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