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Abstract Introduction: Exposure to traumatic brain injury is a core risk factor that predisposes an individual
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to sporadic neurodegenerative diseases. We provide evidence that mechanical stress increases brain
levels of hallmark proteins associated with neurodegeneration.
Methods: Wild-type mice were exposed to multiple regimens of repetitive mild traumatic brain
injury, generating a range of combinations of impact energies, frequencies, and durations of exposure.
Brain concentrations of amyloid b 1–42 (Ab1–42), total tau, and a-synuclein were measured by sand-
wich enzyme-linked immunosorbent assay.
Results: There was a highly significant main effect of impact energy, frequency, and duration of
exposure on Ab1–42, tau, and a-synuclein levels (P , .001), and a significant interaction between
impact energy and duration of exposure for Ab1–42 and tau (P , .001), but not for a-synuclein.
Discussion: Dose-dependent and cumulative influence of repetitive mild traumatic brain injury–
induced mechanical stress may trigger and/or accelerate neurodegeneration by pushing protein con-
centration over the disease threshold.
� 2017 Published by Elsevier Inc. on behalf of the Alzheimer’s Association.
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1. Background

While aging is the greatest risk factor for dementia, several
pieces of evidence suggest that exposure to traumatic brain
injury (TBI) increases the likelihood of developing neurode-
generative diseases later in life, includingAlzheimer’s disease
and Parkinson’s disease [1,2]. A common denominator
among these neurodegenerative disorders is the abnormal
re no conflict of interest.
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accumulation of misfolding proteins, such as 42 amino
acid-long form of the amyloid b peptide (Ab1–42) and tau pro-
tein, hallmark proteinopathies of Alzheimer’s disease [3], and
a-synuclein, a key neurodegenerative biomarker in Park-
inson’s disease. First described nearly a century ago in boxers
as “punch drunk” or “dementia pugilistica” [4], chronic trau-
matic encephalopathy is a progressive neurodegeneration
characterized by a widespread brain deposition of Ab, tau,
and a-synuclein [5–7]. The frequent association found
between chronic traumatic encephalopathy and other
neurodegenerative disorders suggests that repetitive mild
TBI (rmTBI), the most common form of head injury in
humans, can promote the accumulation of multiple proteins
iation.
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and trigger the development of TBI-induced neurode-
generative disease [8].

As it remains unclear how abnormal protein accu-
mulation after TBI relates to the reported increased risk of
Alzheimer’s disease and Parkinson’s disease, we speculate
on the potential relevance of mechanical stress triggering
neurodegeneration as a direct consequence of cascades initi-
ated at the time of impact, reflected by initial changes in Ab,
tau, and a-synuclein concentrations in brain tissues [9]. Pre-
clinical rmTBI studies using transgenic mice models of
amyloidosis or tauopathy produce elevated brain Ab1–42 or
tau levels, respectively, with increased protein deposition
[10,11]. To further elucidate how mechanical stress
triggers neurodegeneration, we propose an rmTBI-induced
mechanical stress model that can significantly increase brain
levels of multiple proteins associated with the development
of neurodegenerative diseases. To this end, we expose wild-
type BALB/c mice to multiple paradigms of rmTBI using a
weight-drop mechanism [12] and long-term exposure to
mechanical stress. Post-injury brain levels of Ab1–42, tau,
and a-synuclein were measured by sandwich enzyme-
linked immunosorbent assay (ELISA).
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Fig. 1. Schematic illustration of the weight-drop device showing the essen-

tial components of the apparatus that comprised a vertical guide tube for the

dropped weight situated above the mouse stage. Mice were restrained in a

50-mL conical polypropylene tube of 30 mm in diameter and 115 mm in

length equipped with an w1 ! 1 cm opening large enough to expose the

cranial scalp. The falcon tube was held by a frame and oriented at an angle,

so that the scalp midline was perpendicularly oriented under a vertical hol-

low guide tube. Stainless steel marbles of 13.5 or 20 g drop vertically

through the path of the hollow guide tube of 20 or 40 cm in height delivering

the impact to the dorsal aspect of the skull.
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2. Methods

2.1. Animal care and maintenance

The subjects of these experiments were 5 to 6-week-old
male BALB/c mice, weighing 19–24 g (n 5 156; Nosco
Pharmaceuticals, Paris, France). Animal handling and
experimentation were performed in accordance with the
European Community’s guidelines regarding the care and
use of laboratory animals. Mice were housed in a vivarium
(10 per cage) under a 12 h light/12 h dark cycle and given
access to pellet food and water ad libitum. Mice were al-
lowed to adapt to the vivarium for at least 1 week before
the experimental procedures. They were randomized into
injured and sham mice groups (six mice per group). After
the injury, animals were rapidly returned to their home ca-
ges for recovery.

2.2. Mechanical stress model of rmTBI

To assess the impact of mechanical stress on changes in
brain levels of Ab, tau, and a-synuclein, a mice model of hu-
man rmTBI was used as previously described [13,14].
Animal models of rmTBI approximate the conditions
associated with repeated concussion encountered in
contact sports [14]. Major modifications were implemented
to test multiple injury paradigms in mice [12] without
causing skull fracture, intracranial bleeding, or seizures
[14] after long-term exposure to injury. The essential com-
ponents and overall arrangement of the rmTBI apparatus
consist of a simple weight-drop device illustrated in Fig. 1.
Animals were placed into 50-mL conical polypropylene
tubes, 30 mm in diameter and 115 mm in length, and
featuring an opening of w1 ! 1 cm, large enough to allow
FLA 5.5.0 DTD � JALZ2536_proof �
for ventilation and exposure of the cranial scalp. The head
was positioned at the cone end [15], subtending a narrow
angle of 60� that restrained head mobility. At the caudal
end of the tube, a flat-top screw cap restrained the mouse
from moving, and a hole kept the tail out of the tube. The
head and body were thus carefully stabilized, obviating the
need for anesthesia [16]. The tube was held by a frame
and placed at an angle, so that the midline of the scalp was
perpendicular to a vertical hollow guide tube 17 mm in
caliber placed right above it. The falling weights consisted
of stainless steel marbles weighing 13.5 or 20 g that were
dropped vertically through the hollow guide tube, 20 or
40 cm in height, delivering the impact to the dorsal aspect
of the skull.
12 December 2017 � 4:58 pm � ce
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2.3. Injury regimens and schedules

Animals were randomized into 24 groups of injured mice
and two sham groups (n 5 156; six mice per group),
enabling us to explore different rmTBI regimens in a
comparative fashion (Fig. 2). Mice randomized to injury
underwent one of the 24 injury regimens that generate a
range of combinations of impact intensity (dropping of
13.5 or 20-g weights, from 20 and 40-cm heights), frequency
(once, twice, or 4!/day), and duration of exposure (10 or
20 weeks). Mice were tested during a regular animal house
visit performed at 8 am, 12 am, 4 pm, and 7:30 pm for
4!/day schedules, at 8 am and 4 am for 2!/day schedules,
and at 12 am for 1!/day schedule.

Impact intensity was quantified by the amount of kinetic
energy that the falling weight possesses due to its motion at
the time of impact. Assuming that air resistance is negligible,
energy input was calculated using classical mechanics
formulae, E5 (m$g$h), whereE is the mechanical energy ex-
pressed in Joules (J), m is the mass (13.5 or 20 g), g is the ac-
celeration due to gravity (9.8 m/s2), and h is the drop height
(20 or 40 cm). The weights and drop heights were estimated
below the threshold intensity of previous models that involved
zero mortality (40 g) and minimal observable neurological
and behavioral effects in subsequent repeated injury regimens
[12–14]. The calculated low-energy impacts generated were
of 0.03 J (13.5 g 2 20 cm), 0.04 J (20 g 2 20 cm), 0.05 J
(13 g 2 40 cm), and 0.08 J (20 g 2 40 cm).

Mice showed no post-traumatic neurological abnor-
malities, such as stereotyped muscle spasticity or irregular
limb movements, following head impacts. Respiratory
distress, including postimpact gasping/heaving, was also
not observed. However, after final injury, signs of lethargy,
tendency of social isolation, or increased aggression could
be recognized in approximately 15% of mice that sustained
impacts of 0.08 J. Assessment of the systematic neurological
and behavioral outcome was outside the scope of the present
study, taking into account the subconcussive nature of head
impacts in this model. The animals were euthanized at day
10 after final injury, and brain tissues were processed as re-
ported in the next section. Control animals had the same age
156 male 5-6 weeks old Balb/c mice rando
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Fig. 2. Study flow diagram. Abbreviations: Ab1–42, amyloid

FLA 5.5.0 DTD � JALZ2536_proof �
as experimental animals at the time of sacrifice and under-
went the same procedures except the weight drop.
2.4. ELISA quantitation of brain Ab1–42 peptides, total tau,
and a-synuclein proteins

Forebrains were rapidly frozen after dissection and stored
at220�C. They were solubilized with T-PER (Pierce) in the
presence of protease inhibitor (Roche) and phosphatase in-
hibitor mixtures (Sigma-Aldrich). The homogenates were
centrifuged at 10,000 rpm for 200 min at 4�C. The superna-
tants were collected and stored at 280�C. The pellets were
resuspended in 70% formic acid and centrifuged as in the
previous step. The supernatants were collected and stored
at 280�C. Formic acid fractions were measured for insol-
uble fragments. Soluble and insoluble levels of Ab1–42 and
total tau (phosphorylated and nonphosphorylated forms) as
well as soluble levels of a-synuclein were quantitatively as-
sessed in the whole brain by a sandwich ELISA (Invitrogen;
Camarillo, CA, USA and Millipore; Billerica, MA, USA) as
per the manufacturer’s directions. Data were expressed in pi-
cograms and per milliliter of homogenate. For a-synuclein,
loading samples were diluted twice to obtain a final concen-
tration over the entire range of the assay. ELISA analysis
was performed on samples of tissue homogenates from
two mouse brains, generating three samples per group (as
n5 6mice/group) and a total of 78 samples for the 26 rmTBI
groups.
2.5. Statistical analyses

Concentrations of Ab1–42, total tau, and a-synuclein
(n5 78)were analyzed as a functionofweight-dropparameters
(impact energy, frequency, and duration of exposure). Fold
change in protein concentrations was calculated based on me-
dian values by comparison with sham mice. Statistical inter-
group differences were calculated using the Kruskal–Wallis
test. Differences between 0.03 J (13.5 g – 20 cm) rmTBI groups
versus sham were evaluated by Mann-Whitney-Wilcoxon test.
Furthermore, a two-way weighted analysis of variance,
assuming that the homogeneity of variances was violated,
mized in 26 groups (n = 6 per group) 

13.5 g 
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0 wk 

4x 
2x 
1x 
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1x 
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1x 
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sham 
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e homogenates from two mouse brains (n = 3 samples/group) 

b1–42; ELISA, enzyme-linked immunosorbent assay.
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Table 1

Ab1–42, total tau, and a-synuclein brain concentrations (pg/mL) stratified by rmTBI parameter Q8

Sham

Impact energy Frequency/day Duration of exposition

0.03 J

13.5 g 20 cm

0.04 J

20 g 20 cm

0.05 J

13 g 40 cm

0.08 J

20 g 40 cm P* 1! 2! 4! P* 10 weeks 20 weeks P*

N 6 18 18 18 18 24 24 24 36 36

Ab1–42
Median

(Q1, Q3)

18.8

(18.2, 20.1)

28.6

(23.6, 36.1)z
39.5

(31.0, 57.2)

39.3

(30.4, 44.5)

46.1

(33.6, 69.7)

,.001 32.2

(25.4, 44.5)

37.4

(32.7, 50.5)

38.9

(31.8, 50.5)

.001 29.9

(23.8, 33.2)

46.0

(39.4, 59.2)

,.001

Fold-changey - 1.52 2.10 2.09 2.09 1.71 1.99 2.07 1.47 2.50

Total Tau

Median

(Q1, Q3)

1082

(1061, 1113)

1309

(1208, 1393)z
1633

(1262, 2072)

1467

(1224, 1857)

1692.0

(1274, 2841)

.004 1313

(1205, 1754)

1403

(1261, 1969)

1500

(1304, 2245)

.004 1230

(1139, 1314)

1930

(1526, 2215)

,.001

Fold-changey - 1.21 1.51 1.37 1.6 1.21 1.30 1.39 1.14 1.76

A-synuclein

Median

(Q1, Q3)

8.0

(7.1, 8.7)

64.2

(35.0, 99.7)z
64.9

(41.3, 109)

84.0

(51.4, 157)

117.8

(59.2, 165)

,.001 58.6

(38.6, 103)

80.1

(44.7, 135)

87.3

(53.9, 162)

,.001 44.8

(35.4, 53.6)

150.4

(100, 164)

,.001

Fold-changey - 8.04 8.12 10.50 14.7 7.34 10.0 10.9 6.4 17.6

Abbreviations: rmTBI, repetitive mild traumatic brain injury; J, Joules; Q1, first quartile; Q3, third quartile.

*P values indicate statistically significant group differences (P , .05) calculated using Kruskal–Wallis test corrected from multiplicity of tests using Bonferroni procedure.
yFold change represents the ratio between injured and sham protein levels (median).
zTheminimum amount of impact energy required to achieve significant differences between rmTBI and sham groups (Mann-Whitney-Wilcoxon test; Ab1–42, P5 .001, tau;P5 .003; and a-synuclein, P� .001).
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Fig. 3. Enzyme Q6-linked immunosorbent assay testing for (A) Ab1–42, (B) total tau, and (C) a-synuclein in brain homogenates 10 days after final injury. In sham

mice, there was no difference in brain levels of Ab1–42 (P 5 .464), total tau (P 5 .841), or a-synuclein (P 5 .572) in 10- versus 20-week groups. After 10 and

20 weeks of sustaining rmTBI, injured mice had increased Ab1–42, tau, and a-synuclein (n5 36, P, .001) than shammice. Compared with the 10-week group,

animals subjected to 20 weeks of rmTBI have significantly more Ab1–42, total tau, and a-synuclein (P, .001). Abbreviations: Ab1–42, amyloid-b1–42; rmTBI,

repetitive mild traumatic brain injury.
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followedbyTukey’s post-hoc comparison testswere performed
to assess the effect of exposure to rmTBI versus sham, the effect
of duration of exposure in experimental 10- and 20-week
groups, and their interaction. Given the high variability in
outcome data between injured groups (n 5 72) compared
with sham (n5 6), a logarithmic transformationwas employed
to conduct the analysis on protein levels. Hence, a three-way
analysis of variance was performed among experimental
rmTBI groups to testmain and interaction effects for impact en-
ergy, frequency, and duration of exposure. Effect sizes were
calculated using the omega squared estimate. All tests were
Fig. 4. Main and interaction effects of impact energy and duration of exposure on lo

There was a highly significant main effect of energy impact (Ab1–42, F3,62 5 41.4;

exposure (Ab1–42, F1,625 296; tau, F1,625 300; and a-synuclein; F1,625 740; P,
(F3,62 5 7.2, P , .001) and tau (F3,62 5 21.3, P , .001) but not for a-synuclein

FLA 5.5.0 DTD � JALZ2536_proof �
corrected for multiplicity using Bonferroni method. Statistical
analysis was performed using R 3.3.2 software.
3. Results

3.1. Ab1–42, total tau, and a-synuclein levels as a function
of rmTBI parameters

Mice were exposed to repeated subconcussive head im-
pacts using a 13.5 or 20-g weight dropped from 20 to
40 cm to impart different forces of impact ranging from
g-transformed values of (A) Ab1–42, (B) total tau, and (C) a-synuclein levels.
tau, F3,62 5 29.8; and a-synuclein, F3,62 5 37.2; P, .001) and duration of

.001). Energy! duration of exposure interaction was significant for Ab1–42
(P 5 1.0). Abbreviation: Ab1–42, amyloid-b1–42.
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Fig. 5. Main effects of daily frequency of impacts on log-transformed values of (A) Ab1–42, (B) total tau, and (C) a-synuclein levels. There was a highly sig-

nificant main effect of impact frequency on Ab1–42, (F2,625 13.8, P, .001), total tau (F2,625 18.9, P, .001), and a-synuclein (F2,625 26.3; P, .001) levels.

No significant interaction effects were found for frequency versus impact energy (Ab1–42, P5 .11; tau, P5 .28; and a-synuclein, P5 .8) nor frequency versus

duration of exposure (Ab1–42, P 5 .11; tau, P 5 .28; and a-synuclein, P 5 .8). Abbreviation: Ab1–42, amyloid-b1–42.
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0.03 to 0.08 J. Table 1 summarizes the results regarding
brain concentrations of Ab1–42, total tau, and a-synuclein as-
sessed quantitatively by ELISA in all groups 10 days after
final injury as a function of rmTBI parameters. The Krus-
kal–Wallis test revealed significant intergroup differences
among sham, 0.03, 0.04, 0.05, and 0.08 J impact groups
(Ab1–42, P , .001; tau, P 5 .004; a-synuclein, P , .001);
sham, 1!, 2!, and 4!/day groups (Ab1–42, P 5 .001;
tau, P 5 .004; a-synuclein, P , .001); and sham, 10- and
20-week groups (Ab1–42, tau, and a-synuclein, P , .001).
Supplementary Table S1 shows median, minimum, and
maximum values for protein levels and fold changes relative
to sham, for the purpose of comparison, as a function of the
24 rmTBI paradigms. Among all experimental groups,
injured mice receiving 20 g – 40 cm impacts 4!/day for
20 weeks (560 impacts) had the highest levels of Ab1–42
(92.2 pg/mL), tau (3738.3 pg/mL), and a-synuclein (258.7
pg/mL) compared with sham, representing a fold increase
of w5.0, 3.4, and 30.2, respectively.

3.2. Prolonged rmTBI increases brain levels of Ab1–42,
total tau, and a-synuclein

The effect of exposure to rmTBI versus sham, the effect of
duration of exposure between 10- and 20-week experimental
groups, and their interaction were highly significant for all pro-
tein levels (P, .001). The effect of rmTBI exposure on protein
levels for 10- and 20-week rmTBI groups compared to controls
are shown in Fig. 3A–3C. In sham mice, there was no signifi-
cant time-dependent difference in brain levels of Ab1–42
(P5 .464), total tau (P5 .841), or a-synuclein (P5 .572) be-
tween the 10-week group and the 20-week group. After
10 weeks of sustaining rmTBI, injured mice (n 5 36) had
increased Ab1–42, tau, and a-synuclein levels (P , .001)
compared to sham mice (n 5 3). The effects of rmTBI on
the 20-week group (n 5 36) was also significant compared
to sham (P , .001). Moreover, the 20-week group had
FLA 5.5.0 DTD � JALZ2536_proof �
significantly higher levels of Ab1–42, tau, and a-synuclein
compared to the 10-week group (P , .001). The minimum
amount of impact energy required to achieve significant differ-
ences between rmTBI and sham groups was 0.03 J for Ab1–42
(P 5 .001), tau (P 5 .003), and a-synuclein (P � .001).
3.3. Cumulative and dose-dependent effect of rmTBI on
brain levels of Ab1–42, total tau, and a-synuclein

The main and interaction effects of rmTBI parameters are
represented in Fig. 4A–4C and Fig. 5A–5C. The results of the
final three-way analysis of variance showed a highly signifi-
cant main effect of impact energy (Ab1–42, F3,62 5 41.4;
tau, F3,62 5 29.8; a-synuclein, F3,62 5 37.2; P , .001), fre-
quency (Ab1–42, F2,625 13.8; tau, F2,625 18.9; a-synuclein;
F2,62 5 26.3; P , .001 [Fig. 5A–5C]), and duration of expo-
sure (Ab1–42, F1,62 5 296.6; tau, F1,62 5 299.6; a-synuclein;
F1,625 739.9; P, .001). Energy! exposure interaction was
significant for Ab1–42 (F3,62 5 7.2, P , .001 [Fig. 4A]) and
tau (F3,625 21.3, P, .001 [Fig. 4B]), but not for a-synuclein
(F3,62 5 0.7, P 5 1.0 [Fig. 4C]). No significant interaction
effects were found regarding energy ! frequency (Ab1–42,
P 5 .105; tau, P 5 .275; a-synuclein, P 5 .801) or for fre-
quency ! exposure (Ab1–42, P 5 1.0; tau, P 5 .178; a-syn-
uclein, P 5 1.0). For all proteins, the duration of exposure
had the major effect size (Ab1–42, u2 5 0.55; tau,
u2 5 0.54; a-synuclein, u2 5 0.76). These results suggest
the possibility of a dose-dependent and cumulative influence
of prolonged rmTBI on brain levels ofAb1–42, total tau, anda-
synuclein.
4. Discussion

4.1. Implications of the results

In the present study, we investigated the effect of me-
chanical stress induced by rmTBI on the key molecular
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biomarkers of neurodegenerative disorders. We hypothe-
sized that mechanical stress triggers and/or accelerates
neurodegeneration as a direct consequence of biochemical
cascades initiated at the time of impact, reflected by initial
changes in tau and a-synuclein concentrations in brain
tissues. To test this hypothesis, we chose a mechanical
stress model [18] that allowed us to create multiple regi-
mens of repeated subconcussive brain injury [12–14] in
nontransgenic animals. Thus, the duration of exposure to
injury used in our study was considerably greater than
that typically used in other rmTBI studies [19]. The
increasing effect of impact energy and frequency of injuries
(Figs. 4 and 5) suggests a dose-dependent influence of
rmTBI on Ab1–42, tau, and a-synuclein levels [20–25].
The highly significant effect of duration of exposure to
rmTBI (Fig. 3) in addition to the energy ! exposure inter-
action for Ab1–42 and t-tau (Fig. 4) also suggest a cumula-
tive effect of mechanical stress on biomarker levels.
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4.2. Comparison with results from prior TBI studies

Mechanical stress, induced by TBI, accelerates the pro-
duction of Ab1–42 in transgenic mice that express mutant hu-
man amyloid precursor protein (APP) [10,34–36]. In one
study, APP mutation has shown to induce a fourfold
increase in soluble brain Ab1–42 levels in aging transgenic
APP mice [10]. Our mechanical stress model induced a five-
fold increase in Ab1–42, in the absence of amyloid-type mu-
tation. Shorter weight-drop regimens of 5 to 8 days of
exposure to rmTBI in nonmutated mice have not demon-
strated a significant increase in brain Ab levels, measured
by ELISA [19,37]. Controlled cortical impact injury, in
turn, can induce a two to threefold increase in Ab1–42 in
APP transgenic mice [38,39] and a 50% increase in Ab1–42
in wild-type mice.

The microtubule-associated protein tau has six isoforms
in humans, and it is a normal constituent of axons. After
TBI, tau dissociates from the microtubules and is dispersed
by interneuronal transfer and via glial to glial spread
[40,41]. Several studies have used transgenic mice in the
assessment of tau pathology after TBI. Most of these
models used the controlled cortical impact mechanism to
demonstrate increased total tau, cleaved-tau, and/or
phosphorylated-tau immunoreactivity within the first post-
injury weeks [9]. Controlled cortical impact also induces
severity-dependent increased cleaved-tau levels in the cor-
tex and hippocampus of injured rats, 1.5- to eightfold
higher compared with shams [42]. Unlike our results, one
study using wild-type mice subjected to rmTBI (4!/day,
1 day/week for 4 weeks) did not reproduce postinjury tau
changes [11].

Brain concentrations of a-synuclein largely reflect cell
death occurring after TBI as a result of the primary injury
and widespread postinjury neurodegeneration [43]. In a
study using 24-month-old mice that underwent cortical
impact injury, a-synuclein immunoreactivity increased in
FLA 5.5.0 DTD � JALZ2536_proof �
the neutrophil of the cortex, stratum, and hippocampus
[44]. With an in vitro scratch injury model and in vivomouse
weight-drop model, Surgucheva et al. [45] showed that TBI
causes alterations in the expression and localization of
synucleins near the impact-damaged area. Before the injury,
a-synuclein is diffused in the cytoplasm of neurons. After
the injury, it forms punctate structures in the cytoplasm
that keep increasing for up to 24 h. It is known that the extent
of a-synuclein fibrillation, which precedes aggregation, de-
pends on the initial protein concentration [46]. A key point
highlighted in our study is the disproportionate changes in
a-synuclein levels (30.2-fold increase) relative to the
changes in brain concentrations of Ab1–42 and tau (5- and
3.4-fold increase respectively) compared to sham mice. It
suggests that the effect of mechanical stress on a-synuclein
levels is considerably more significant than on Ab1–42 and
tau levels.
4.3. Possible biological interpretations

Amyloidosis, tauopathy, and synucleinopathy may be
influenced by independent and/or common risk factors.
Biochemical processes that initiate these proteinopathies
may occur in parallel, and their onset and rate could be under
the influence of environmental risk factors [47], such as me-
chanical stressors [48]. Neuronal structures are highly
vulnerable to mechanical insults, even to physiological
cellular energy loads [49]. Concerning amyloidosis, not
only does Ab accumulate after TBI but so do the necessary
APP enzymes responsible for Ab production: BACE1 pro-
tein (b-secretase) and the g-secretase complex protein
presenilin-1 [50–52]. We hypothesize that transmembrane
enzymes BACE and presenilin-1 are mechanosensitive en-
zymes, as TBI causes changes in cell membrane integrity
[53], and membrane deformation strongly relates to Ab con-
centrations [54]. Structurally, an injured axon can undergo
progressive ultrastructural changes after mechanical stress,
including microtubule fragmentation, leading to degradation
of the cytoskeleton. Thus, it is possible that tau fragmenta-
tion [55] in acute brain injury will somehow increase protein
concentration in brain tissues. It raises the possibility that
mechanical stress might trigger molecular pathways that
result in the overproduction of proteins prone to pathological
accumulation in neurodegenerative disease including tau,
Ab1–42, and a-synuclein.
4.4. Confounding factors

Some limitations to our study should be considered. First,
while Ab1–42, tau, and a-synuclein exist in a number of
different forms, including oligomeric (Ab and a-synuclein)
and phosphorylated forms (tau and a-synuclein), the assay
used in this study was primarily designed for the detection
of the total concentration of the protein. A high brain level
of Ab1–42 is a necessary condition for aggregation and
accumulation, but it is not sufficient [56]. So, we could not
12 December 2017 � 4:58 pm � ce
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evaluate the threshold level of Ab1–42, as well as the tau and
a-synuclein concentrations necessary to cause lesions, as
biochemical changes may not persist at chronic time points
after injury [31]. It was outside the scope of this study to spe-
cifically identify Ab, tau, or a-synuclein pathology by
immunohistochemistry methods that guarantee eliability
and consistency inr terms of results in protein accumulation.

Human postmortem studies on rmTBI can show combi-
nations of proteinopathies, indicating that the neuropa-
thology of TBI is best described as a polypathology [8].
Modulation of Ab secretion by a-synuclein exemplifies
the cooperation between amyloid and Lewy pathology
[57]. The synergy between the Ab and tau pathophysiology
has been largely documented in the “amyloid cascade hy-
pothesis,” which states that the accumulation of Ab peptide
is the cause of a cascade of reactions that lead to tau pathol-
ogy [58]. Thus, the ability of a-synuclein, Ab, or tau to
directly or indirectly affect each other through interaction
processes might contribute to the overlap of increasing
levels of these biomarkers in our study. Finally, the ELISA
methods employed in different studies, in terms of the an-
tibodies and the detection method used, and the different
protocols for sample collection and processing could ac-
count for discrepancies in concentration measurements in
brain homogenates [59].
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4.5. Conclusion

The main finding to emerge from this rmTBI study in
nontransgenic mice is a dose-dependent and cumulative in-
fluence of prolonged rmTBI exposure on brain levels of
Ab1–42, total tau, and a-synuclein. These observations raise
the possibility that rmTBI-induced mechanical stress could
trigger and/or accelerate neurodegeneration as a direct or in-
direct consequence of biochemical cascades initiated at the
time of impact, reflected by initial changes in Ab1–42, tau,
and a-synuclein concentrations in brain tissues. Human
postmortem studies of chronic traumatic encephalopathy
confirmed coaccumulation of these three proteins in brain
tissues [7]. Otherwise, epidemiological, neuropathological,
and microstructural studies largely support the notion of
mechanical stress–induced neurodegeneration, and further
investigations should provide more mechanistic insights
into this hypothesis.
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RESEARCH IN CONTEXT

1. Systematic review: Epidemiological and case-
control human studies, neuropathological evidence,
and preclinical data suggest that repetitive mild
traumatic brain injury can trigger neurodegenerative
conditions, such as Alzheimer’s disease and Parkin-
son’s disease. The extent to which mechanical dy-
namics of repetitive mild traumatic brain injury
influence neurodegenerative cascades and even
normal aging remains a mystery.

2. Interpretation: Our findings suggest that continuous,
repetitive, and long-term exposure to mechanical
stress induced by repetitive mild traumatic brain
injury promote increased concentrations of hallmark
proteins associated with the development of neuro-
degenerative diseases.

3. Future directions: Further histopathological and me-
chanobiological investigationsusing this experimental
model should provide more mechanistic insights into
the effect of themechanical energyonproteinmisfold-
ing, spreading, aggregation, and deposition.
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